论文复现:Active Learning with the Furthest NearestNeighbor Criterion for Facial Age Estimation
Furthest Nearest Neighbor 方法就是其他文章中的Descripency方法,是一种diversity samplig方法。
由于特征空间是不断变化的,在特征空间上使用Descripency方法违背了该准则的初衷。
import os
import torch
import numpy as np
from copy import deepcopy
from collections import OrderedDict
from PIL import Image
from sklearn.model_selection import StratifiedKFold
class FNN_2DLDA(object):
def __init__(self, X_train, y_train, labeled, budget, X_test, y_test):
self.X = X_train
self.y = y_train
self.X_test = X_test
self.y_test = y_test
self.nSample = X_train.shape[0]
print("样本个数=",self.nSample)
self.labeled = list(deepcopy(labeled)) # 已标记样本的索引
self.unlabeled = self.init_unlabeled_index()
self.labels = np.sort(np.unique(y_train)) # 标签列表
self.nClass = len(self.labels)
self.budget = deepcopy(budget)
self.nRow, self.nCol = self.X[0].shape # 图像样本的行数和列数
self.K = 10
self.class_mean, self.global_mean, self.class_count = self.get_init_mean()
self.S_bl, self.S_br, self.S_wl, self.S_wr = self.get_init_Sbl_Sbr_Swl_Swr()
self.Wl, self.Wr = self.get_Wl_Wr()
self.X_feature = self.get_feature()
self.batch_size = 5
def init_unlabeled_index(self):
# =============无标记样本索引===============
unlabeled = [i for i in range(self.nSample)]
for idx in self.labeled:
unlabeled.remove(idx)
return unlabeled
def get_init_mean(self):
class_mean = torch.zeros((self.nClass, self.nRow, self.nCol))
class_count = torch.zeros(self.nClass)
global_mean = torch.zeros((self.nRow, self.nCol))
# ========计算各类样本中心========
for i in range(self.nClass):
# ==获取第i个类的样本的索引==
ids = []
for idx in self.labeled:
if self.y[idx] == self.labels[i]:
ids.append(idx)
class_count[i] = len(ids)
class_mean[i] = torch.mean(self.X[ids], dim=0)
# ==========计算全局样本中心============
for i in range(self.nClass):
global_mean += (class_count[i] / len(self.labeled)) * class_mean[i]
return class_mean, global_mean, class_count
def get_init_Sbl_Sbr_Swl_Swr(self):
# =============计算Sbl和Sbr=================
S_bl = torch.zeros((self.nCol, self.nCol))
S_br = torch.zeros((self.nRow, self.nRow))
for i in range(self.nClass):
tmp = self.class_mean[i] - self.global_mean
S_bl += self.class_count[i] * torch.mm(tmp.T,tmp)
S_br += self.class_count[i] * torch.mm(tmp, tmp.T)
# =============计算Swl和Swr=================
S_wl = torch.zeros((self.nCol, self.nCol))
S_wr = torch.zeros((self.nRow, self.nRow))
for i in range(self.nClass):
for idx in self.labeled:
if self.y[idx] == self.labels[i]:
tmp = self.X[idx] - self.class_mean[i]
S_wl += torch.mm(tmp.T, tmp)
S_wr += torch.mm(tmp, tmp.T)
return S_bl, S_br, S_wl, S_wr
def get_Wl_Wr(self):
Wl_eigen_val, Wl_eigen_vec = torch.linalg.eig(torch.mm(torch.linalg.pinv(self.S_wl), self.S_bl))
Wr_eigen_val, Wr_eigen_vec = torch.linalg.eig(torch.mm(torch.linalg.pinv(self.S_wr), self.S_br))
odx_Wl = np.flipud(np.argsort(Wl_eigen_val))
odx_Wr = np.flipud(np.argsort(Wr_eigen_val))
Wl = torch.ones((self.nCol, self.K))
Wr = torch.ones((self.K,self.nRow))
for i in range(self.K):
Wr[i] = Wr_eigen_vec[odx_Wr[i]]
Wl[:,i] = Wl_eigen_vec[odx_Wl[i]]
return Wl, Wr
def get_feature(self):
X_featrue = torch.zeros((self.nSample, self.K, self.K))
for idx in range(self.nSample):
X_featrue[idx] = torch.mm(torch.mm(self.Wr,self.X[idx]),self.Wl)
return X_featrue
def incremental_update_X_feature(self, selected):
# ========update self.class_mean============
for i in range(self.nClass):
tmp_count = 0
tmp_mean = torch.zeros((self.nRow, self.nCol))
for idx in selected:
if self.y[idx] == self.labels[i]:
tmp_count += 1
tmp_mean += self.X[idx]
self.class_mean[i] = (self.class_count[i] * self.class_mean[i] + tmp_count * tmp_mean) / (self.class_count[i] + tmp_count)
self.class_count[i] = self.class_count[i] + tmp_count
# =========updata self.global_mean===========
for i in range(self.nClass):
self.global_mean = torch.zeros((self.nRow, self.nCol))
self.global_mean += (self.class_count[i] / len(self.labeled)) * self.class_mean[i]
# =========updata S_bl & S_br ===========
self.S_bl = torch.zeros((self.nCol, self.nCol))
self.S_br = torch.zeros((self.nRow, self.nRow))
for i in range(self.nClass):
tmp = self.class_mean[i] - self.global_mean
self.S_bl += self.class_count[i] * torch.mm(tmp.T,tmp)
self.S_br += self.class_count[i] * torch.mm(tmp, tmp.T)
# =============update Swl & Swr=================
self.S_wl = torch.zeros((self.nCol, self.nCol))
self.S_wr = torch.zeros((self.nRow, self.nRow))
for i in range(self.nClass):
for idx in self.labeled:
if self.y[idx] == self.labels[i]:
tmp = self.X[idx] - self.class_mean[i]
self.S_wl += torch.mm(tmp.T, tmp)
self.S_wr += torch.mm(tmp, tmp.T)
Wl_eigen_val, Wl_eigen_vec = torch.linalg.eig(torch.mm(torch.linalg.pinv(self.S_wl), self.S_bl))
Wr_eigen_val, Wr_eigen_vec = torch.linalg.eig(torch.mm(torch.linalg.pinv(self.S_wr), self.S_br))
odx_Wl = np.flipud(np.argsort(Wl_eigen_val))
odx_Wr = np.flipud(np.argsort(Wr_eigen_val))
self.Wl = torch.ones((self.nCol, self.K))
self.Wr = torch.ones((self.K,self.nRow))
for i in range(self.K):
self.Wr[i] = Wr_eigen_vec[odx_Wr[i]]
self.Wl[:,i] = Wl_eigen_vec[odx_Wl[i]]
# =============更新特征===============
self.X_featrue = torch.zeros((self.nSample, self.K, self.K))
for idx in range(self.nSample):
self.X_featrue[idx] = torch.mm(torch.mm(self.Wr,self.X[idx]),self.Wl)
def image_select(self, batch_size):
metric_dict = OrderedDict()
for idx in self.labeled:
min_dist = np.inf
min_index = None
for jdx in self.unlabeled:
dist_tmp = torch.norm(self.X_feature[idx] - self.X_feature[jdx])
if dist_tmp < min_dist:
min_dist = dist_tmp
min_index = jdx
metric_dict[(idx,min_index)] = min_dist
selected = []
for i in range(batch_size):
tar_tuple = max(metric_dict, key=metric_dict.get)
selected.append(tar_tuple[1])
self.labeled.append(tar_tuple[1])
self.labeled.append(tar_tuple[1])
self.unlabeled.remove(tar_tuple[1])
del metric_dict[tar_tuple]
for idx in [tar_tuple[0], tar_tuple[1]]:
min_dist = np.inf
min_index = None
for jdx in self.unlabeled:
dist_tmp = torch.norm(self.X_feature[idx] - self.X_feature[jdx])
if dist_tmp < min_dist:
min_dist = dist_tmp
min_index = jdx
metric_dict[(idx,min_index)] = min_dist
return selected
def start(self):
while self.budget > 0:
if self.budget > self.batch_size:
selected = self.image_select(batch_size=self.batch_size)
self.budget -= self.batch_size
else:
selected = self.image_select(batch_size=self.budget)
self.budget = 0
print("selected::",selected)
# ==========如果标记预算还没用完,则还要更新模型============
if self.budget > 0:
self.incremental_update_X_feature(selected=selected)
if __name__ == '__main__':
path_dir = r"E:\PycharmProjects\DataSets\FaceData\yalefaces"
# ===============基础信息=================
nSample = 165
nClass = 11
labels = [i for i in np.arange(1,nClass+1)]
nRow = 243
nCol = 320
Budget = 30
# ==============构造标签==================
y = np.zeros(165)
i = 0
label = 1
j = 1
while i < 165:
if i+1 <= label*11:
y[i] = label
i += 1
else:
label +=1
# ============读取图片数据=================
X = torch.zeros((nSample, nRow, nCol))
index = 0
for name in os.listdir(path_dir):
if name.split(".")[0][:7] == "subject":
img = np.array(Image.open(path_dir + "\\" + name))
X[index] = torch.from_numpy(img)
index += 1
SKF = StratifiedKFold(n_splits=5, shuffle=True)
for train_idx, test_idx in SKF.split(X=X,y=y):
X_train = X[train_idx]
y_train = y[train_idx]
X_test = X[test_idx]
y_test = y[test_idx]
labeled = []
label_dict = OrderedDict()
for lab in np.unique(y_train):
label_dict[lab] = []
for idx in range(len(y_train)):
label_dict[y_train[idx]].append(idx)
for idxlist in label_dict.values():
for jdx in np.random.choice(idxlist,size=2, replace=False):
labeled.append(jdx)
model = FNN_2DLDA(X_train=X_train,y_train=y_train,labeled=labeled,budget=Budget,X_test=X_test,y_test=y_test)
model.start()
break