Python计算样本熵
文章目录
Python计算样本熵
样本熵算法
来自 算法原理(2):样本熵(SampEn) - 程序员大本营 (pianshen.com)
代码
import pandas as pd
import numpy as np
def sampEn(L:np.array, std : float ,m: int= 2, r: float = 0.15):
"""
计算时间序列的样本熵
Input:
L: 时间序列
std: 原始序列的标准差
m: 1或2
r: 阈值
Output:
SampEn
"""
N = len(L)
B = 0.0
A = 0.0
# Split time series and save all templates of length m
xmi = np.array([L[i:i+m] for i in range(N-m)])
xmj = np.array([L[i:i+m] for i in range(N-m+1)])
# Save all matches minus the self-match, compute B
B = np.sum([np.sum(np.abs(xmii-xmj).max(axis=1) <= r * std)-1 for xmii in xmi])
# Similar for computing A
m += 1
xm = np.array([L[i:i+m] for i in range(N-m+1)])
A = np.sum([np.sum(np.abs(xmi-xm).max(axis=1) <= r * std)-1 for xmi in xm])
# Return SampEn
return -np.log(A/B)